Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Point defects typically reduce the thermal conductivity (κ) of a crystal due to increased scattering of heat‐carrying phonons, a mechanism that is well understood and widely used to enhance or impede heat transfer in the material for different applications. Here an opposite effect is reported where the introduction of point defects in graphite with energetic particle irradiation increases its cross‐planeκby nearly a factor of two, from 10.8 to 18.9 W m K−1at room temperature. Integrated differential phase contrast imaging with scanning transmission electron microscopy revealed the creation of spiro interstitials in graphite by the irradiation. The enhancement inκis attributed to a remarkable mechanism that works to the benefit of phonon propagation in both the harmonic and anharmonic terms: these spiro interstitial defects covalently bridge neighboring basal planes, simultaneously enhancing acoustic phonon group velocity and reducing phonon–phonon scattering in the graphite structure. The enhancement ofκreveals an unconventional role of lattice defects in heat conduction, i.e., easing the propagation of heat‐carrying phonons rather than impeding them in layered materials, inspiring their applications for thermal management in heavily radiative environments.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Safety and efficiency are primary goals of air traffic management. With the integration of unmanned aerial vehicles (UAVs) into the airspace, UAV traffic management (UTM) has attracted significant interest in the research community to maintain the capacity of three-dimensional (3D) airspace, provide information, and avoid collisions. We propose a new decision-making architecture for UAVs to avoid collision by formulating the problem into a multi-agent game in a 3D airspace. In the proposed game-theoretic approach, the Ego UAV plays a repeated two-player normal-form game, and the payoff functions are designed to capture both the safety and efficiency of feasible actions. An optimal decision in the form of Nash equilibrium (NE) is obtained. Simulation studies are conducted to demonstrate the performance of the proposed game-theoretic collision avoidance approach in several representative multi-UAV scenarios.more » « less
-
Abstract Alkaline hydrogen evolution reaction (HER), consisted of Volmer and Heyrovsky/Tafel steps, requires extra energy for water dissociation, leading to more sluggish kinetics than acidic HER. Despite the advances in electrocatalysts, how to combine active sites to synergistically promote both steps and understand the underlying mechanism remain largely unexplored. Here, DFT calculations predict that NiO accelerates Volmer step while metallic Ni facilitates Heyrovsky/Tafel step. A facile strategy is thus developed to control Ni/NiO heterosurfaces in uniform and well-dispersed Ni-based nanocrystals, targeting both reaction steps synergistically. By systematically modulating the surface composition, we find that steering the elementary steps through tuning the Ni/NiO ratio can significantly enhance alkaline HER activity and Ni/NiO nanocrystals with a Ni/NiO ratio of 23.7% deliver the best activity, outperforming other state-of-the-art analogues. The results suggest that integrating bicomponent active sites for elementary steps is effective for promoting alkaline HER, but they have to be balanced.more » « less
An official website of the United States government

Full Text Available